
Tinycals: Step by Step Tacticals

Claudio Sacerdoti Coen1 Enrico Tassi2 Stefano Zacchiroli3

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 — 40127 Bologna, ITALY

Abstract

Most of the state-of-the-art proof assistants are based on procedural proof languages, scripts, and rely on
LCF tacticals as the primary tool for tactics composition. In this paper we discuss how these ingredients
do not interact well with user interfaces based on the same interaction paradigm of Proof General (the de
facto standard in this field), identifying in the coarse-grainedness of tactical evaluation the key problem.
We propose Tinycals as an alternative to a subset of LCF tacticals, showing that the user does not experience
the same problem if tacticals are evaluated in a more fine-grained manner. We present the formal operational
semantics of tinycals as well as their implementation in the Matita proof assistant.

Keywords: Interactive Theorem Proving, Small Step Semantics, Tacticals

1 Introduction

Several state-of-the-art interactive theorem provers are based on procedural proof

languages; the user interacts with the system mainly via a textual script that records

the executed commands. The commands that allow progress during a proof are

called tactics and are executed atomically. NuPRL [10], Isabelle [6], Coq [13], and

Matita 4 (the proof assistant under development by our team at the University of

Bologna) are a few examples of those systems.

The best known proof assistant that provides only a declarative proof language

is Mizar [8], while a few others superpose a declarative proof language on top of a

procedural core. The most notable system in this category is Isabelle, which in its

Isabelle/Isar variant offers to users the declarative Isar proof language [14].

With the exception of Mizar, both kind of systems share the same user interface

paradigm, inspired by the pioneering work on CtCoq [2] and now incarnated by

1 sacerdot@cs.unibo.it
2 tassi@cs.unibo.it
3 zacchiro@cs.unibo.it
4 http://matita.cs.unibo.it

Electronic Notes in Theoretical Computer Science 174 (2007) 125–142

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.09.026

mailto:sacerdot@cs.unibo.it
mailto:tassi@cs.unibo.it
mailto:zacchiro@cs.unibo.it
http://matita.cs.unibo.it
http://www.elsevier.com/locate/entcs

theorem lt_O_defactorize_aux:
\forall f:nat_fact.
\forall i:nat.
O < defactorize_aux f i.
intro. elim f.
simplify. unfold lt.
rewrite > times_n_SO.
apply le_times.
change with (O < \pi _ i).
apply lt_O_nth_prime_n.
change with (O < (\pi _ i)^n).
apply lt_O_exp.
apply lt_O_nth_prime_n.
simplify.unfold lt.
rewrite > times_n_SO.
apply le_times.
change with (O < (\pi _ i)^n).
apply lt_O_exp.
apply lt_O_nth_prime_n.
change with
(O < defact n1 (S i)).

apply H.

theorem lt_O_defactorize_aux:
\forall f:nat_fact.
\forall i:nat.
O < defactorize_aux f i.
intro; elim f;
[1,2:
simplify; unfold lt;
rewrite > times_n_SO;
apply le_times;
[change with (O < \pi _ i);

apply lt_O_nth_prime_n
|2,3:

change with (O < (\pi _ i)^n);
apply lt_O_exp;
apply lt_O_nth_prime_n

| change with
(O < defact n1 (S i));

apply H]].

Fig. 1. The same proof with (on the right) and without (on the left) tacticals.

Proof General [1]. In this paradigm, the smallest amount of code that can be

executed atomically is the statement, which during a proof is either a tactic (in the

procedural world) or a single proof step (in the declarative world).

Scripts can be understood only by step by step execution, getting feedback on

the proof status from the system. Since feedback is given only between atomic

steps (at the so called execution points), it is important to have atomic steps as

small as possible for the sake of understanding but, also of debugging and proof

maintenance. This is in contrast with tacticals, higher order constructs which can

be used to combine tactics together.

In this paper we propose a replacement for tacticals in order to obtain smaller

atomic execution steps. Our work is not relevant in the context of declarative proof

languages. However, those few systems where it is possible to embed procedural

scripts inside declarative proof steps may already provide the functionality we sug-

gest.

Tacticals first appeared in the LCF theorem prover [5] in 1979. Paradigmatic

examples of tacticals are sequential composition and branching. 5 The former, usu-

ally written as “t1 ; t2”, takes two tactics t1 and t2 and apply t2 to each of the

conjectures resulting from the application of t1 to the current conjecture (of course

its application can be repeated to obtain pipelines of tactics “t1 ; t2 ; t3 ; · · · ”).

The latter, “t ; [t1 | · · · | tn]”, takes n + 1 tactics, applies t to the current conjec-

ture and, requiring t to return exactly n conjectures, applies t1 to the first returned

conjecture, t2 to the second, and so forth.

Tacticals improve procedural proof languages providing concrete advantages,

that we illustrate with Figure 1. The concrete syntax used in the figure is that of

the Matita proof assistant.

Proof structuring. Using branching, the script representation of proofs can mimic

the structure of the proof tree (the tree having conjectures as nodes and tactic-

labeled arcs). Since proof tree branches usually reflect conceptual parts of the

5 In this paper the term “branching” is used to refer to LCF’s THENL tactical

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142126

pen and paper proof, the branching tactical helps in improving scripts readability

(on the average very poor, if compared with declarative proof languages). Even

maintainability of proof scripts is improved by the use of branching, for example

when hypothesis are added, removed or permuted.

For instance, in the right hand side of Figure 1 it is now clear that elim f splits

the proof in two branches; both of them (selected by “[1,2:”) begin with the

same tactics until each branch is split again by the application of the le times

lemma. Of the four branches, the second and third one (selected by “|2,3:”) are

proved by the same tactics, being proofs of the same fact. All the tactics that are

not followed by branching do not introduce ramifications in the proof.

In practice, the proof on the left hand side would be written by using inden-

tation and blank lines to understand where branches start and end. This way

readability is improved, but a lesser effect is achieved for proof maintenance.

Moreover, the system does not verify in any way the layout of the proof and does

not guarantee consistency when the script is changed. We expect that users will

abandon this behaviour as soon as an alternative without drawbacks — not the

case of LCF tacticals — will surface.

Notice that the selection of multiple branches at a time we propose in this

paper is an improvement over the standard branching tactical.

Conciseness. As code factorization is a good practice in programming, proof fac-

torization is in theorem proving. The use of tacticals like sequential composition

reduce the need of copy-and-paste in proof scripts helping in factorizing common

cases in proofs (so frequent in formal proofs pertaining to the computer science

field). Conciseness is evident in Figure 1.

In all the proof assistants we are aware of, tacticals are evaluated atomically

and placing the execution point in the middle of complex tacticals (for example at

occurrences of “;” in tactic pipelines) is not allowed. In Figure 1, this means that

having the execution point at the beginning of the proof and asking the system to

move it forward (i.e. to execute the next statement), the user will result in a “proof

completed” status, without having any feedback of the inner proof status the system

passed through. The only way for the user to inspect those status — a frequent

need, for instance for script maintenance or proof presentation — is to manually

de-structure the complex tacticals.

The big step evaluation of tacticals has also drawbacks on how proof authors

develop their proofs. Since it is not always possible to predict the outcome of

complex tactics, the following is common practice:

(i) evaluate the next tactic of the script;

(ii) inspect the set of returned conjectures;

(iii) decide whether the use of “;” or “[” is appropriate;

(iv) if it is: retract the last statement, add the tactical, go to step (i).

Last, but not less important, is the imprecise error reporting of big step eval-

uation of tacticals. Consider the frequent case of a script breaking and the user

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142 127

having to fix it. The error message returned by the system may concern an inner

status unknown to the user, since the whole tactical is evaluated at once. Moreover,

the error message will probably concern terms that do not appear verbatim in the

script. Finding the statement that need to be fixed is usually done replacing tactics

with identity tactic proceeding outside-in, until the single failing tactic is found.

This technique is not only error prone, but is even not reliable in presence of side-

effects (tactics closing conjectures other than that on which they are applied), since

the identity tactic has no side-effects and branches of the proof may be affected by

their absence.

We claim that the tension between tacticals and Proof General like interfaces

can be broken. In this paper we present a tiny language of tacticals — the so

called tinycals — which solves this issue. Tinycals can be evaluated in small steps,

enabling the execution point to be placed inside complex structures like pipelines or

branching constructs. This goal is achieved by de-structuring the syntax of tacticals

and stating the semantics as a transition system over evaluation status, that are

structures richer than the proof status tactics act on. Note that de-structuring does

not necessarily mean changing the concrete syntax of tacticals, but rather enabling

parsing and immediate evaluation of tactical fragments like “[” alone.

The paper is organized as follows. Section 2 describes the abstract syntax of

tinycals together with their small-step operational semantics. Other advantages of

tinycals with respect to LCF tacticals are discussed there as well. Section 3 presents

the tinycals implementation in Matita. Section 4 deals with tacticals not covered

by tinycals. Section 5 discusses related work and Section 6 concludes the paper.

2 Tinycals: syntax and semantics

The grammar of tinycals is reported in Table 1, where 〈L〉 is the top-level nonter-

minal generating the script language. 〈L〉 is a sequence of statements 〈S〉. Each

statement is either an atomic tactical 〈B〉 (marked with “tactic”) or a tinycal.

Note that the part of the grammar related to the tinycals themselves is com-

pletely de-structured. The need for embedding the structured syntax of LCF tac-

ticals (nonterminal 〈B〉) in the syntax of tinycals will be discussed in Section 4.

For the time being, the reader can suppose the syntax to be restricted to the case

〈B〉 ::= 〈T 〉.

We will now describe the semantics of tinycals which is parametric in the proof

status tactics act on and also in their semantics (see Table 2).

A proof status is the logical status of the current proof. It can be seen as

the current proof tree, but there is no need for it to actually be a tree. Matita

for instance just keeps the set of conjectures to prove, together with a proof term

where meta-variables occur in place of missing components. From a semantic point

of view the proof status is an abstract data type. Intuitively, it must describe at

least the set of conjectures yet to be proved. A Goal is another abstract data type

used to index conjectures.

The function apply tac implements tactic application. It consumes as input

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142128

Table 1
Abstract syntax of tinycals and core LCF tacticals.

〈S〉 ::= (statements)

“tactic” 〈B〉 (tactic)

| “.” (dot)

| “;” (semicolon)

| “[” (branch)

| “|” (shift)

| i1,. . ., in“:” (projection)

| “ ∗ :” (wild card)

| “accept” (acknowledge)

| “]” (merge)

| “focus” [g1;· · ·; gn] (selection)

| “done” (de-selection)

〈L〉 ::= (language)

〈S〉 (statement)

| 〈S〉 〈S〉 (sequence)

〈B〉 ::= (tacticals)

〈T 〉 (tactic)

| “try” 〈B〉 (recovery)

| “repeat” 〈B〉 (looping)

| 〈B〉“;”〈B〉 (composition)

| 〈B〉“;[” (branching)

〈B〉“|” . . . “|”〈B〉“]”

〈T 〉 ::= . . . (tactics)

Table 2
Semantics parameters.

proof status: ξ

proof goal: goal

tactic application: apply tac : T → ξ → goal → ξ × goal list× goal list

a tactic, a proof status, and a goal (the conjecture the tactic should act on), and

returns as output a proof status and two lists of goals: the set of newly opened goals

and the set of goals which have been closed. This choice enables our semantics to

account for side-effects, that is: tactics can close goals other than that on which they

have been applied, a feature implemented in several proof assistants via existential

or meta-variables [4,9]. The proof status was not directly manipulated by tactics in

LCF because of the lack of meta-variables and side effects.

In the rest of this section we will define the semantics of tinycals as a transition

(denoted by −→) on evaluation status. Evaluation status are defined in Table 3.

The first component of the status (code) is a list of statements of the tinycals

grammar. The list is consumed, one statement at a time, by each transition. This

choice has been guided by the un-structured form of our grammar and is the heart

of the fine-grained execution of tinycals.

The second component is the proof status, which we enrich with a context stack

(the third component). The context stack, a representation of the proof history so

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142 129

Table 3
Evaluation status.

task = int× (Open goal | Closed goal) (task)

Γ = task list (context)

τ = task list (“todo” list)

κ = task list (dot’s continuations)

ctxt tag = B | F (stack level tag)

ctxt stack = (Γ × τ × κ × ctxt tag) list (context stack)

code = 〈S〉 list (statements)

status = code × ξ × ctxt stack (evaluation status)

far, is handled as a stack: levels get pushed on top of it either when the branching

tinycal “[” is evaluated, or when “focus” is; levels get popped out of it when the

corresponding closing tinycals are (“]” for “[” and “done” for “focus”). Since

the syntax is un-structured, we can not ensure statically proper nesting of tinycals,

therefore each stack level is equipped with a tag which annotates it with the creating

tinycal (B for “[” and F for “focus”). In addition to the tag, each stack level has

three components Γ, τ and κ respectively for active tasks, tasks postponed to the

end of branching and tasks posponed by “.”. The role of these componenets will

be explained in the description of the tinycals that acts on them. Each component

is a sequence of numbered tasks. A task is an handler to either a conjecture yet to

be proved, or one which has been closed by a side-effect. In the latter case the user

will have to confirm the instantiation with “accept”.

Each evaluation status is meaningful to the user and can be presented by slightly

modifying already existent user interfaces. Our presentation choice is described in

Section 3. The impatient reader can take a sneak preview of Figure 2, where the

interesting part of the proof status is presented as a notebook of conjectures to prove,

and the conjecture labels represent the relevant information from the context stack

by means of: 1) bold text (for conjectures in the currently selected branches, targets

of the next tactic application; they are kept in the Γ component of the top of the

stack); 2) subscripts (for not yet selected conjectures in sibling branches; they are

kept in the Γ component of the level below the top of the stack). The rest of the

information hold in the stack does not need to be shown to the user since it does

not affect immediate user actions.

We describe first the semantics of the tinycals that do not involve the creation

of new levels on the stack. The semantics is shown in Table 4, where some utility

functions (described in Appendix A) are used.

Tactic application

Consider the first case of the tinycals semantics of Table 4. It makes use of the

first component (denoted Γ) of a stack level, which represent the “current” goals,

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142130

Table 4
Basic tinycals semantics.

〈“tactic” 〈T 〉 ::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξn, S′〉 n ≥ 1

where [g1;· · ·; gn] = get open goals in tasks list(Γ)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ξ0, G
o
0, G

c
0〉 = 〈ξ, [], []〉

〈ξi+1, G
o
i+1, G

c
i+1〉 = 〈ξi, G

o
i , G

c
i 〉 gi+1 ∈ Gc

i

〈ξi+1, G
o
i+1, G

c
i+1〉 = 〈ξ′, (Go

i \ Gc) ∪ Go, Gc
i ∪ Gc〉 gi+1 	∈ Gc

i

where 〈ξ′, Go, Gc〉 = apply tac(T, ξi, gi+1)

and S′ = 〈Γ′, τ ′, κ′, t〉 ::close tasks(Gc
n, S)

and Γ′ = mark as handled (Go
n)

and τ ′ = remove tasks(Gc
n, τ)

and κ′ = remove tasks(Gc
n, κ)

〈“;”::c, ξ, S〉 −→ 〈c, ξ, S〉

〈“accept”::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, S′〉

where Γ = [〈j1, Closed g1〉; · · · ; 〈jn, Closed gn〉] n ≥ 1

and Gc = [g1;· · ·; gn]

and S′ = 〈[], remove tasks(Gc, τ), remove tasks(Gc, κ), t〉

:: close tasks(Gc, S)

〈“.”::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, 〈[l1], τ, [l2;· · ·; ln] ∪ κ, t〉 ::S〉 n ≥ 1

where get open tasks(Γ) = [l1;· · ·; ln]

〈“.”::c, ξ, 〈Γ, τ, l ::κ, t〉 ::S〉 −→ 〈c, ξ, 〈[l], τ, κ, t〉 ::S〉

where get open tasks(Γ) = []

that is the set of goals to which the next tactic evaluated will be applied.

When a tactic is evaluated, the set Γ of current goals is inspected (expecting

to find at least one of them), and the tactic is applied in turn to each of them in

order to obtain the final proof status. At each step i the two sets Co
i and Gc

i of

goals opened and closed so far are updated. This process is atomic to the user

(i.e. no feedback is given while the tactic is being applied to each of the current

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142 131

goals in turn), but she is free to cast off atomicity using branching. After the tactic

has been applied to all goals, the new set of current goals is created containing all

the goals which have been opened during the applications, but not already closed.

They are marked (using the mark as handled utility) so that they do not satisfy the

unhandled predicate, indicating that some tactic has been applied to them. Goals

closed by side effects are removed from τ and κ and marked as Closed in S. The

reader can find a datailed description of this procedure in Appendix A.

Sequential composition

Since sequencing is handled by Γ, the semantics of “;” is simply the identity

function. We kept it in the syntax of tinycal for preserving the parallelism with

LCF tacticals.

Side-effects handling

“accept” (third case in Table 4) is a tinycal used to deal with side-effects.

Consider for instance the case in which there are two current goals on which the

user branches. It can happen that applying a tactic to the first one closes the second,

removing the need of the second branch in the script. Using tinycals the user will

never see branches she was aware of disappear without notice. Cases like the above

one are thus handled marking the branch as Closed (using the close tasks utility)

on the stack and requiring the user to manually acknowledge what happened on it

using the “accept” tinycal, preserving the correspondence among script structure

and proof tree.

Example 2.1 Consider the following script:

apply trans_eq; [apply H | apply H1 | accept]

where the application of the transitivity property of equality to the conjecture L = R

opens the three conjectures ?1 : L =?3, ?2 : ?3 = R and ?3 : nat. Applying the

hypothesis H instantiates ?3, implicitly closing the third conjecture, that thus has

to be acknowledged.

Local de-structuring

Structuring proof scripts enhances their readability as long as the script structure

mimics the structure of the intuition behind the proof. For this reason, authors do

not always desire to structure proof scripts down to the most far leaf of the proof

tree.

Example 2.2 Consider for instance the following script snippet template:

tac1;

[tac2. tac3.

| tac4; [tac5 | tac6]]

Here the author is trying to mock-up the structure of the proof (two main

branches, with two more branches in the second one), without caring about the

structure of the first branch.

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142132

Tacticals do not allow un-structured scripts to be nested inside branches. In the

example, they would only allow to replace the first branch with the identity tactic,

continuing the un-structured snippet “tac2. tac3.” at the end of the snippet,

but this way the correspondence among script structure and proof tree would be

completely lost. The semantics of the tinycal “.” (last two cases of Table 4) accounts

for local use of un-structured script snippets.

When “.” is applied to a non-empty set of current goals, the first one is selected

and become the new singleton current goals set Γ. The remaining goals are re-

membered in the third component of the current stack level (dot’s continuations,

denoted κ), so that when the “.” is applied again on an empty set of goals they

can be recalled in turn. The locality of “.” is inherited by the locality of dot’s

continuation κ to stack levels.

Table 5 describes the semantics of tinycals that require a stack discipline.

Branching

Support for branching is implemented by “[”, which creates a new level on the

stack for the first of the current goals. Remaining goals (the current branching

context) are stored in the level just below the freshly created one. There are three

different ways of selecting them. Repeated uses of “|” consume the branching con-

text in sequential order. i1,. . ., in“:” enables multiple positional selection of goals

from the branching context. “∗:” recall all goals of the current branching context

as the new set of current goals. The semantics of all these branching tacticals is

shown in the first five cases of Table 5.

Each time the user finishes working on the current goals and selects a new goal

from the branching context, the result of her work (namely the current goals in

Γ) needs to be saved for restoring at the end of the branching construct. This is

needed to implement the LCF semantics that provides support for snippets like the

following:

Example 2.3

tac1; [tac2 | tac3]; tac4

where the goals resulting by the application of tac2 and tac3 are re-flowed

together to create the goals set for tac4.

The place where we store them is the second component of stack levels (todo

list, denoted τ). Each time a branching selection tinycal is used the current goals

set (possibly empty) is appended to the todo list for the current stack level.

When “]” is used to finish branching (fifth rule of Table 5), the todo list τ is used

to create the new set of current goals Γ, together with the goals not handled during

the branching (note that this is a small improvement over LCF tactical semantics,

where leaving not handled branches is not allowed).

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142 133

Table 5
Branching tinycals semantics.

〈“[”::c, ξ, 〈[l1;· · ·; ln], τ, κ, t〉 ::S〉 −→ 〈c, ξ, S′〉 n ≥ 2

where renumber branches([l1;· · ·; ln]) = [l′1; · · · ; l′n]

and S′ = 〈[l′1], [], [], B〉 ::〈[l
′

2 ; · · · ; l′n], τ, κ, t〉 ::S

〈“|”::c, ξ, 〈Γ, τ, κ, B〉 ::〈[l1 ;· · ·; ln], τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S′〉 n ≥ 1

where S′ = 〈[l1], τ ∪ get open tasks(Γ) ∪ κ, [], B〉 ::〈[l2 ;· · ·; ln], τ ′, κ′, t′〉 ::S

〈i1,. . ., in“:”::c, ξ, 〈[l], τ, [], B〉 ::〈Γ′ , τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S′〉

where unhandled(l)

and ∀j = 1 . . . n, ∃lj = 〈j, sj〉, lj ∈ l ::Γ′

and S′ = 〈[l1; · · · ; ln], τ, [], B〉 ::〈(l ::Γ′) \ [l1; · · · ; ln], τ ′, κ′, t′〉 ::S

〈“ ∗ :”::c, ξ, 〈[l], τ, [], B〉 ::〈Γ′ , τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S′〉

where unhandled(l)

and S′ = 〈l ::Γ′, τ, [], B〉 ::〈[], τ ′ ∪ get open tasks(Γ) ∪ κ, κ′, t′〉 ::S

〈“]”::c, ξ, 〈Γ, τ, κ, B〉 ::〈Γ′ , τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S′〉

where S′ = 〈τ ∪ get open tasks(Γ) ∪ Γ′ ∪ κ, τ ′, κ′, t′〉 ::S

〈“focus” [g1;· · ·; gn] ::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, S′〉

where gi ∈ get open goals in status(S)

and S′ = 〈mark as handled([g1; · · · ; gn]), [], [], F〉

::close tasks(〈Γ, τ, κ, t〉 ::S)

〈“done”::c, ξ, 〈[], [], [], F〉 ::S 〉 −→ 〈c, ξ, S〉

Focusing

The pair of tinycals “focus”. . . “done” is similar in spirit to the pair “[”. . . “]”,

but is not required to work on the current branching context. With “focus”, goals

located everywhere on the stack can be recalled to form a new set of current goals.

On this the user is then free to work as she prefer, for instance branching, but is

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142134

required to close all of them before invoking “done”.

The intended use of “focus”. . . “done” is to deal with meta-variables and side

effects. The application of a tactic to a conjecture with meta-variables in the conclu-

sion or hypotheses can instantiate the meta-variables making other conjectures false.

In other words, in presence of meta-variables conjectures are no longer independent

and it becomes crucial to consider and close a bunch or dependent conjectures to-

gether, even if in far away branches of the proof. In these cases “focus”. . . “done”

is used to select all the related branches for immediate work on them. Alternatively,

“focus”. . . “done” can be used to jump on a remote branch of the tree in order to

instantiate a meta-variable by side effects before resuming proof search from the

current position.

Note that using “focus”. . . “done”, no harm is done to the proper structuring

of scripts, since all goals the user is aware of, if closed, will be marked as Closed

requiring her to manually “accept” them later on in the proof.

3 Implementation issues

Tinycals have been implemented in the Matita proof assistant. This section de-

scribes the issues faced in their implementation.

Encoding of tacticals

Tacticals play two different roles in a proof assistant. They can be used both

in scripts and in tactic implementations. As a matter of fact at least one tactical

among sequential composition and branching is used in the implementation of each

derived tactic.

In this paper we propose the replacement of tacticals with tinycals. Tacticals

operate on proof status, while tinycals operate on evaluation status. This is wel-

come when tinycals are used in scripts, since the additional information kept in the

evaluation status is the rich intermediate state we want to present to the user. On

the contrary, this datatype change does not allow the replacement of tacticals with

tinycals in the implementation of derived tactics. Thus we are immediately led to

consider if it is possible to express tacticals in terms of tinycals, in order to avoid

an independent re-implementation of related operations.

The answer is positive under additional assumptions on the abstract data type

of proof status. Intuitively, we need to define two “inverse” functions to embed a

proof status, a goal, and a code in an evaluation status (let it be embed) and to

project an evaluation status to a proof status and two lists of opened and closed

goals (let it be proj). Once the two functions are implemented, we can express

sequential composition and branching as follows:

(t1; t2)(ξ, g) = proj (eval(embed([t1; “; ”; t2], ξ, g))) (1)

(t; [t1| . . . |tn])(ξ, g) = proj (eval(embed([t; “[”; t1; “|”; . . . ; “|”; tn; “]”], ξ, g))) (2)

where eval is the transitive closure of −→ . For each status S the code of the status

eval(S) is empty.

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142 135

The embed function is easily defined as:

embed(c, ξ, g) = 〈c, ξ, [〈g, [], [], F〉]〉

To define the proj function, however, we need to be able to compute the set of

goals opened and closed by eval(embed(c, ξ, g)) for any given code c, proof status ξ

and selected goal g. The formers are easily computed by the get open goals in status

utility of Appendix A. However, to compute the latter the information stored in an

evaluation context is not enough.

We say that tactics do not reuse goals whenever closed goals cannot be re-opened

(remember that a goal is just an handle to a conjecture, not the conjecture itself).

Concretely, it is possible to respect this property in the implementation by keeping

a global counter that represents the highest goal index already used. When a tactic

opens a new goal it picks the successor of the counter, that is also incremented.

When tactics do not reuse goals it is possible to determine the goals closed by a

sequence of evaluation steps by comparing the set of open goals at the two extremes

of the sequence. To make this comparison it is possible to add to the proof status

abstract data type a method that returns the set of opened goals.

Let diff be the function that given two proof status ξ and ξ′ returns the set of

goals that were open in ξ and are closed in ξ′. For each proof status ξ the projξ

function is defined as:

projξ([], ξ
′, S) = (ξ′, get open goals in status(S), diff (ξ, ξ′))

The function proj ξ must be used in Equation (1) and Equation (2) in place of

proj .

Tinycals user interface

Tinycals would be worthless without a way to present evaluation status to the

user. Our current solution for the Matita user interface is shown in Figure 2.

We already had a Proof General like user interface with script and execution

point (on the left of Figure 2) and a tabbed representation of the set of open con-

jectures (on the right) as sequents, using meta-variable indexes as labels. What the

user was missing to work with tinycals was a visual representation of the stack. Our

choice has been to represent the current branching context as tab label annotations:

all goals in the current goals set have their labels typeset in boldface, goals of the

current branching context have labels prepended by |n (where n is their positional

index), and goals already closed by side-effects have strike-through labels like: ?n.

For instance in Figure 2, the only goal (in bold-face) the next tactic will be

applied to is 20 (i.e. Γ = [〈1, Open 20〉]), while goal 21 will be selected by the next

“|” tinycal.

This choice makes the user aware of which goals will be affected by a tactic

evaluated at the execution point, and of all the indexing information she might

need there. She indeed can see all meta-variable indexes (in case she wants to

“focus”) and all the positional indexes of goals in the current branching context

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142136

Fig. 2. Evaluation status representation in the Matita user interface.

(for i1,. . ., in“:”and “∗:”). Yet, this user interface choice minimizes the drift from

the usual way of working with Proof General like interfaces.

4 A digression on the remaining tacticals

Of the basic LCF tacticals, we have considered so far only sequential composi-

tion and branching. It is worth discussing the remaining ones, in particular try,

|| (or-else) and repeat.

The try T tactical, that never fails, applies the tactic T , behaving as the identity

if T fails. It is a particular case of the or-else tactical: T1||T2 behaves as T1 if T1

does not fail, as T2 otherwise. Thus try T is equivalent to T ||id.

The try and or-else tacticals occur in a script with two different usages. The most

common one is after sequential composition: T1; try T2 or T1;T2||T3. Here the idea is

that the user knows that T2 can be applied to some of the goals generated by T1 (and

T3 to the others in the second case). So she is faced with two possibilities: either use

branching and repeat T2 (or T3) in every branch, or use sequential composition and

backtracking (encapsulated in the two tacticals). Tinycals offer a better solution

to either choice by means of the projection and wild card tinycals: T1; [i1, . . . , in :

T2|∗ : T3]. The latter expression is not also more informative to the reader, but it

is also computationally more efficient since it avoids the (maybe costly) application

of T2 to several goals.

The second usage of try and or-else is inside a repeat tactical. The repeat T

tactical applies T once, failing if T fails; otherwise the tactical recursively applies

T again on every goal opened by T until T fails, in which case it behaves as the

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142 137

identity tactic.

Is it possible to provide an un-structured version of try T , T ||T ′, and repeat T

in the spirit of tinycals in order to allow the user to write and execute T step

by step inspecting the intermediate evaluation status? The answer is negative as

we can easily see in the simplest case, that of try T . Consider the statement

T ; try (T1;T2) where sequential composition is supposed to be provided by the

corresponding tinycal. Let T open two goals and suppose that “try” is executed

atomically so that the evaluation point is just before T1. When the user executes

T1, T1 can be applied as expected to both goals in sequence. Let ξ be the proof

status after the application of T and let ξ1 and ξ2 be those after the application of

T1 to the first and second goal respectively. Let now the user execute the identity

tinycal “;” followed by T2 and let T2 fail over the first goal. To respect the intended

semantics of the tactical, the status ξ2 should be partially backtracked to undo the

changes from ξ to ξ1, preserving those from ξ1 to ξ2.

If the system has side effects the latter operation is undefined, since T1 applied to

ξ could have instantiated meta-variables that controlled the behavior of T1 applied

to ξ1. Thus undoing the application of T1 to the first goal also invalidates the

previous application of T1 to the second goal.

Even if the system has no side effects, the requirement that proof status can be

partially backtracked is quite restrictive on the possible implementations of a proof

status. For instance, a proof status cannot be a simple proof term with occurrences

of meta-variables in place of conjectures, since backtracking a tactic would require

the replacement of a precise subterm with a meta-variable, but there would be no

information to detect which subterm.

As a final remark, the simplest solution of implementing partial backtracking

by means of a full backtrack to ξ followed by an application of T1 to the second

goal only does not conform to the spirit of tinycals. With this implementation, the

application of T1 to the second goal would be performed twice, sweeping the waste

of computational resources under the rug. The only honest solution consists of

keeping all tacticals, except branching and sequential composition, fully structured

as they are now. The user that wants to inspect the behavior of T ; try T1 before that

of T ; try (T1;T2) is obliged to do so by executing atomically try T1, backtracking

by hand and executing try (T1;T2) from scratch. A similar conclusion is reached

for the remaining tacticals. For this reason in the syntax given in Table 1 the

production 〈B〉 lists all the traditional tacticals that are not subsumed by tinycals.

Notice that atomic sequential composition and atomic branching (as implemented

in the previous section) are also listed since tinycals cannot occur as arguments of

a tactical.

5 Related work

Different presentations of the semantics of tacticals has been given in the past. The

first presentation has been given in [5] by Gordon et al. Although a larger set

of tacticals than that considered here was described in their work, the problem of

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142138

inspection of inner proof status was not considered. Proof General-like interfaces

were not available at the time, as well as meta-variables and tactics with side-effects.

In [7], Kirchner described a small step semantics of Coq tacticals. Despite the

minor expressive advantages offered by tinycals over the corresponding Coq tacticals

(like “focus”, “∗:”, i1,. . ., in“:”, the less constrained use of “[”, and the structuring

facilities implemented by “.” and “accept”), the formalization of tinycals is more

general and we believe that it can be applied to a large class of proof assistants. In

particular our semantics only assume an abstract proof status and a very general

type for tactic applications, while in [7] a very detailed API for proof trees was

assumed.

Delahaye in [3] described Ltac , a powerful meta-language which can be used both

by users and tactics implementors to write small automations at the proof language

level. Ltac is way more powerful than tinycals, featuring constructs typical of high-

level programming and defining their reduction semantics. However, since its aim

was different, Ltac fails to address the interaction problem that tinycals do address.

Two alternative approaches for authoring structured HOL scripts have been pro-

posed in [11] and [12]. The first approach, implemented in Syme’s TkHOL, is similar

to the one presented in this paper but lacks a formal description. Moreover, unlike

HOL, we consider a logic with meta-variables which can be closed by side effects.

Therefore the order in which branches are closed by tactics is relevant and must be

made explicit in the script. For this reason we support tinycals like “focus” and

i1,. . ., in“:” which were not needed in TkHOL. The second approach, by Takahashi

et al., implements syntax directed editing by automatically claiming lemmata for

each goal opened by the last executed tactic. This technique breaks down with

meta-variables because they are not allowed in the statements of lemmata.

6 Conclusions

In this paper we presented the syntax and semantics of tinycals, a tactical language

able to mimic some of the LCF tacticals so widespread in state-of-the-art proof assis-

tants. Tinycals advantages over LCF tacticals is that their syntax is un-structured

and their evaluation proceeds step by step, enabling the user to start execution of a

structured script before its completion. Intermediate proof status can be inspected

and tactics with side effects are supported as well. The neat result is better inte-

gration with user interfaces based on the CtCoq/Proof General paradigm. Some

implementative issues have also been discussed, and the extension of the approach

to other tacticals has been considered with negative results.

Tinycals have been implemented and are used in the Matita proof assistant

for the ongoing development of its standard library. Users experienced with other

proof assistants, in particular Coq, consider them a serious improvement in the

proof authoring interface. This is not a big figure (our users are just the member of

our research team at the time of writing), but is enough to motivate our work on

them, hoping to see them adopted soon in other systems.

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142 139

References

[1] Aspinall, D., Proof General: A generic tool for proof development, in: Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2000, Lecture Notes in Computer Science 1785 (2000).

[2] Bertot, Y., The CtCoq system: Design and architecture, Formal Aspects of Computing 11 (1999),
pp. 225–243.

[3] Delahaye, D., “Conception de langages pour décrire les preuves et les automatisations dans les outils
d’aide à la preuve: une étude dans le cadre du système Coq,” Ph.D. thesis, Université Pierre et Marie
Curie (Paris 6) (2001).
URL http://cedric.cnam.fr/∼delahaye/publications/these-delahaye.ps.gz

[4] Geuvers, H. and G. I. Jojgov, Open proofs and open terms: A basis for interactive logic, in: J. Bradfield,
editor, Computer Science Logic: 16th International Workshop, CLS 2002, Lecture Notes in Computer
Science 2471 (2002), pp. 537–552.

[5] Gordon, M. J. C., R. Milner and C. P. Wadsworth, Edinburgh LCF: a mechanised logic of computation,
Lecture Notes in Computer Science 78 (1979).

[6] The Isabelle proof-assistant,
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/ .

[7] Kirchner, F., Coq Tacticals and PVS Strategies: A Small-Step Semantics, in: Design and Application
of Strategies/Tactics in Higher Order Logics, 2003.

[8] The Mizar proof-assistant,
http://mizar.uwb.edu.pl/ .

[9] Muñoz, C., “A Calculus of Substitutions for Incomplete-Proof Representation in Type Theory,” Ph.D.
thesis, INRIA (1997).

[10] The NuPRL proof-assistant,
http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html .

[11] Syme, D., A new interface for hol - ideas, issues and implementation, in: Proceedings of Higher Order
Logic Theorem Proving and Its Applications, 8th International Workshop, TPHOLs 1995, Lecture
Notes in Computer Science 971 (1995), pp. 324–339.

[12] Takahashi, K. and M. Hagiya, Proving as editing HOL tactics, Formal Aspects of Computing 11 (1999),
pp. 343–357.

[13] The Coq Development Team, The Coq proof assistant reference manual,
http://coq.inria.fr/doc/main.html (2005).

[14] Wenzel, M., Isar - a generic interpretative approach to readable formal proof documents, in: Theorem
Proving in Higher Order Logics, 1999, pp. 167–184.

A Utility functions

The goal automatically selected by “[” or “|” is called unhandled until a tactic is

applied to it. Unhandled goals are just postponed (not moved into the todo list

τ) by i1,. . ., in“:”. Goals opened by a tactic are marked with mark as handled to

distinguishing them from unhandled goals. The function renumber branches is used

by “[” to name branches.

unhandled(l) =

⎧⎨
⎩

true if l = 〈n, Open g〉 ∧ n > 0

false otherwise

mark as handled([g1; · · · ; gn]) = [〈0, Open g1〉; · · · ; 〈0, Open gn〉]

renumber branches([〈i1, s1〉; · · · ; 〈in, sn〉]) = [〈1, s1〉; · · · ; 〈n, sn〉]

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142140

http://cedric.cnam.fr/~delahaye/publications/these-delahaye.ps.gz
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
http://mizar.uwb.edu.pl/
http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html
http://coq.inria.fr/doc/main.html

The next three functions returns open goals or tasks in the status or parts of it.

Open goals are those corresponding to conjectures still to be proved.

get open tasks(l) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[] if l = []

〈i, Open g〉 ::get open tasks(tl) if l = 〈i, Open g〉 :: tl

get open tasks(tl) if l = hd :: tl

get open goals in tasks list(l) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[] if l = []

g :: get open goals in tasks list(tl) if l = 〈 , Open g〉 :: tl

get open goals in tasks list(tl) if l = 〈 , Closed g〉 :: tl

get open goals in status(S) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[] if S = []

get open goals in tasks list(Γ@τ@κ)

@get open goals in status(tl) if S = 〈Γ, τ, κ, 〉 :: tl

To keep the correspondence between branches in the script and ramifications in the

proof, goals closed by side-effects are marked as Closed if they are in Γ (that keeps

track of open branches). Otherwise they are silently removed from postponed goals

(in todo list τ or dot continuation κ). Closed branches have to be accepted by the

user with “accept”.

close tasks(G,S) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[] if S = []

〈closeaux (G,Γ), τ ′, κ′, t〉 ::close tasks(G, tl) if S = 〈Γ, τ, κ, t〉 :: tl

where τ ′ = remove tasks(G, τ)

and κ′ = remove tasks(G,κ)

closeaux (G, l) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[] if l = []

〈i, Closed g〉 ::closeaux (G, tl) if l = 〈i, Open g〉 :: tl ∧ g ∈ G

hd ::closeaux (G, tl) if l = hd :: tl

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142 141

remove tasks(G, l) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[] if l = []

remove tasks(G, tl) if l = 〈i, Open g〉 :: tl ∧ g ∈ G

hd ::remove tasks(G, tl) if l = hd :: tl

C.S. Coen et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 125–142142

	Introduction
	Tinycals: syntax and semantics
	Implementation issues
	A digression on the remaining tacticals
	Related work
	Conclusions
	References
	Utility functions

