
Crafting a Proof Assistant

Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 – 40127 Bologna, ITALY

{asperti,sacerdot,tassi,zacchiro}@cs.unibo.it

Abstract. Proof assistants are complex applications whose develop-
ment has never been properly systematized or documented. This work is
a contribution in this direction, based on our experience with the devel-
opment of Matita: a new interactive theorem prover based—as Coq—on
the Calculus of Inductive Constructions (CIC). In particular, we analyze
its architecture focusing on the dependencies of its components, how they
implement the main functionalities, and their degree of reusability.
The work is a first attempt to provide a ground for a more direct com-
parison between different systems and to highlight the common func-
tionalities, not only in view of reusability but also to encourage a more
systematic comparison of different softwares and architectural solutions.

1 Introduction

In contrast with automatic theorem provers, whose internal architecture is in
many cases well documented (see e.g. the detailed description of Vampire in [16]),
it is extremely difficult to find good system descriptions for their interactive coun-
terpart. Traditionally, the only component of the latter systems that is suitably
documented is the kernel, namely the part that is responsible for checking the
correctness of proofs. Considering that:

1. most systems (claim to) satisfy the so called “De Bruijn criterion”, that is
the principle that the correctness of the whole application should depend on
the correctness of a sufficiently small (and thus reliable) kernel and

2. interactive proving looks like a less ambitious task than fully automatic prov-
ing (eventually, this is the feeling of an external observer)

one could easily wonder where the complexity of interactive provers comes from.1

Both points above are intentionally provocative. They are meant to emphasize
that: (1) the kernel is possibly the most crucial, but surely not the most impor-
tant component of interactive provers and (2) formal checking is just one of the
activities of interactive provers, and probably not the most relevant one.

Of course, interactivity should be understood as a powerful integration rather
than as a poor surrogate of automation: the user is supposed to interact when the
system fails alone. Interaction, of course, raises a number of additional themes
that are not present (or not so crucial) in automatic proving:
1 e.g.: Coq is about 166,000 lines of code, to be compared with 50,000 lines of Otter



2 A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli

– library management (comprising both per-proof history and management of
incomplete proofs);

– development of a strong linguistic support to enhance the human-machine
communication of mathematical knowledge;

– development of user interfaces and interaction paradigms particularly suited
for this kind of applications.

While the latter point has received a renewed attention in recent years, as
testified by several workshops on the topic, little or no literature is available on
the two former topics, hindering a real progress in the field.

In order to encourage a more systematic comparison of different software and
architectural solutions we must first proceed to a more precise individuation of
issues, functionalities, and software components. This work is meant to be a
contribution in this direction. In particular we give in Section 2 a data-oriented
high-level description of our interactive theorem prover denominated “Matita”.2

We also try to identify the logic independent components to understand the
degree of coupling between the system architecture and its logical framework.
In Section 3 we provide an alternative presentation of the architecture, based on
the offered functionalities. Section 4 is an estimation of the complexity of the
components and of the amount of work required to implement them.

Although our architectural description comprises components that (at present)
are specific to our system (such as the large use of metadata for library indexing)
we believe that the overall design fits most of the existent interactive provers and
could be used as a ground for a deeper software comparison of these tools.

2 Data-Driven Architectural Analysis

Formulae and proofs are the main data handled by an interactive theorem prover.
Both have several possible representations according to the actions performed on
them. Each representation is associated with a data type, and the components
that constitute an interactive theorem prover can be classified according to the
representations they act on. In this section we analyze the architecture of Matita
according to this classification.

We also make the effort of identifying the components that are logic indepen-
dent or that can be made such abstracting over the data types used for formulae
and proofs. This study allows to quantify the efforts required in changing the un-
derlying logic of Matita for the sake of experimenting with new logic foundations
while preserving the technological achievements.

The proof and formulae representations used in Matita as well as its general
architecture have been influenced by some design commitments: (1) Matita is
heavily based on the Curry-Howard isomorphism. Execution of procedural and
declarative scripts produce proof terms (λ-terms) that are kept for later pro-
cessing. Even incomplete proofs are represented as λ-terms with typed linear
2 “matita” means “pencil” in Italian: a simple, well known, and widespread authoring

tool among mathematicians



Crafting a Proof Assistant 3

Fig. 1. Matita components with thousands of lines of code (klocs)

placeholders for missing subproofs. (2) The whole library, made of definitions
and proof objects only, is searchable and browsable at any time. During brows-
ing proof objects are explained in pseudo-natural language. (3) Proof authoring
is performed editing either procedural or declarative scripts. Formulae are typed
using ambiguous mathematical notation. Overloading is not syntactically con-
strained nor avoided using polymorphism.

T
T
T

automation
7.0 klocs

decision
procedures
2.1 klocs



4 A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli

According to the above commitments, in Matita we identified 5 term repre-
sentations: presentation terms (concrete syntax), content terms (abstract syntax
trees with overloaded notation), partially specified terms (λ-terms with place-
holders), completely specified terms (well typed λ-terms), metadata (approxi-
mations of λ-terms).

Figure 1 shows the components of Matita organized according to the term
representation they act on. For each component we show the functional depen-
dencies on other components and the number of lines of source code. Dark gray
components are either logic independent or can be made such by abstraction.
Dashed arrows denote abstractions over logic dependent components. A normal
arrow from a logic dependent component to a dark gray one is meant to be a
dependency over the component, once it has been instantiated to the logic of
the system.

We describe now each term representation together with the components of
Matita acting on them.

Completely Specified Terms Formalizing mathematics is a complex and
onerous task and it is extremely important to develop large libraries of “trusted”
information to rely on. At this level, the information must be completely spec-
ified in a given logical framework in order to allow formal checking. In Matita
proof objects are terms of the Calculus of Inductive Constructions (CIC); terms
represent both formulae and proofs. The proof-checker, implemented in the ker-
nel component, is a CIC type-checker. Proof objects are saved in an XML format
that is shared with the Coq Proof Assistant so that independent verification is
possible.

Mathematical concepts (definitions and proof objects) are stored in a dis-
tributed library managed by the file manager, which acts as an abstraction layer
over the concept physical locations.

Concepts stored in the library are indexed for retrieval using metadata. We
conceived a logic independent metadata-set that can accommodate most logical
frameworks. The logic dependent indexing component extracts metadata from
mathematical concepts. The logic independent searching tools are described in
the next section.

Finally, the library manager component is responsible for maintaining the
coherence between related concepts (among them automatically generated lem-
mas) and between the different representations of them in the library (as com-
pletely specified terms and as metadata that approximate them).

The actual generation of lemmas is a logic dependent activity that is not
directly implemented by the library manager, that is kept logical independent:
the component provides hooks to register and invoke logic dependent lemma
generators, whose implementation is provided in a component that we describe
later and that acts on partially specified terms.

Metadata An extensive library requires an effective and flexible search en-
gine to retrieve concepts. Examples of flexibility are provided by queries up



Crafting a Proof Assistant 5

to instantiation or generalization of given formulae, combination of them with
extra-logical constraints such as mathematical classification, and retrieval up to
minor differences in the matched formula such as permutation of the hypotheses
or logical equivalences. Effectiveness is required to exploit the search engine as
a first step in automatic tactics. For instance, a paramodulation based proce-
dure must first of all retrieve all the equalities in the distributed library that
are likely to be exploited in the proof search. Moreover, since search is mostly
logic independent, we would like to implement it on a generic representation of
formulae that supports all the previous operations.

In Matita we use relational metadata to represent both extra-logical data
and a syntactic approximation of a formula (e.g. the constant occurring in head
position in the conclusion, the set of constants occurring in the rest of the conclu-
sion and the same information for the hypotheses). The logic dependent indexing
component, already discussed, generates the syntactic approximation from com-
pletely specified terms. The metadata manager component stores the metadata
in a relational database for scalability and handles, for the library manager,
the insertion, removal and indexing of the metadata. The search engine com-
ponent [1] implements the approximated queries on the metadata that can be
refined later on, if required, by logic dependent components.

Partially Specified Terms In partially specified terms, subterms can be omit-
ted replacing them with untyped linear placeholders or with typed metavariables
(in the style of [8,13]). The latter are Curry-Howard isomorphic to omitted sub-
proofs (conjectures still to be proved).

Completely specified terms are often highly redundant to keep the type-
checker simple. This redundant information may be omitted during user-machine
communication since it is likely to be automatically inferred by the system re-
placing conversion with unification [19] in the typing rules (that are relaxed to
type inference rules). The refiner component of Matita implements unification
and the type inference procedure, also inserting implicit coercions [3] to fix local
type-checking errors. Coercions are particularly useful in logical systems that
lack subtyping [10]. The already discussed library manager is also responsible
for the management of coercions, that are constants flagged in a special way.

Subproofs are never redundant and if omitted require tactics to instantiate
them with partial proofs that have simpler omitted subterms. Tactics are ap-
plied to omitted subterms until the proof object becomes completely specified
and can be passed to the library manager. Higher order tactics, usually called
tacticals and useful to create more complex tactics, are also implemented in
the tactics component. The current implementation in Matita is based on tiny-
cals [17], which supports a step-by-step execution of tacticals (usually seen as
“black boxes”) particularly useful for proof editing, debugging, and maintain-
ability. Tinycals are implemented in Matita in a small but not trivial component
that is completely abstracted on the representation of partial proofs.

The lemma generator component is responsible for the automatic generation
of derived concepts (or lemmas), triggered by the insertion of new concepts in



6 A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli

the library. The lemmas are generated automatically computing their statements
and then proving them by means of tactics or by direct construction of the proof
objects.

Content Level Terms The language used to communicate proofs and espe-
cially formulae with the user must also exploit the comfortable and suggestive
degree of notational abuse and overloading so typical of the mathematical lan-
guage. Formalized mathematics cannot hide these ambiguities requiring terms
where each symbol has a very precise and definite meaning.

Content level terms provide the (abstract) syntactic structure of the human-
oriented (compact, overloaded) encoding. In the content component we provide
translations from partially specified terms to content level terms and the other
way around. The former translation, that loses information, must discriminate
between terms used to represent proofs and terms used to represent formulae.
Using techniques inspired by [6,7], the formers are translated to a content level
representation of proof steps that can in turn easily be rendered in natural
language. The representation adopted has greatly influenced the OMDoc [14]
proof format that is now isomorphic to it. Terms that represent formulae are
translated to MathML Content formulae [12].

The reverse translation for formulae consists in the removal of ambiguity by
fixing an interpretation for each ambiguous notation and overloaded symbol used
at the content level. The translation is obviously not unique and, if performed
locally on each source of ambiguity, leads to a large set of partially specified
terms, most of which ill-typed. To solve the problem the ambiguity manager
component implements an algorithm [18] that drives the translation by alter-
nating translation and refinement steps to prune out ill-typed terms as soon as
possible, keeping only the refinable ones. The component is logic independent
being completely abstracted over the logical system, the refinement function,
and the local translation from content to partially specified terms. The local
translation is implemented for occurrences of constants by means of call to the
search engine.

The translation from proofs at the content level to partially specified terms
is being implemented by means of special tactics following previous work [9,20]
on the implementation of declarative proof styles for procedural proof assistants.

Presentation Level Terms Presentation level captures the formatting struc-
ture (layout, styles, etc.) of proof expressions and other mathematical entities.

An important difference between the content level language and the presen-
tation level language is that only the former is extensible. Indeed, the presenta-
tion level language has a finite vocabulary comprising standard layout schemata
(fractions, sub/superscripts, matrices, . . . ) and the usual mathematical symbols.

The finiteness of the presentation vocabulary allows its standardization. In
particular, for pretty printing of formulae we have adopted MathML Presenta-
tion [12], while editing is done using a TEX-like syntax. To visually represent
proofs it is enough to embed formulae in plain text enriched with formatting



Crafting a Proof Assistant 7

boxes. Since the language of boxes is very simple, many similar specifications
exist and we have adopted our own, called BoxML (but we are eager to cooperate
for its standardization with other interested teams).

The notation manager component provides the translations from content
level terms to presentation level terms and the other way around. It also provides
a language [15] to associate notation to content level terms, allowing the user to
extend the notation used in Matita. The notation manager is logic independent
since the content level already is.

The remaining components, mostly logic independent, implement in a modu-
lar way the user interface of Matita, that is heavily based on the modern GTK+
toolkit and on standard widgets such as GtkSourceView that implements a
programming oriented text editor and GtkMathView that implements ren-
dering of MathML Presentation formulae enabling contextual and controlled
interaction with the formula.

The graph browser is a GTK+ widget, based on Graphviz, to render de-
pendency graphs with the possibility of contextual interaction with them. It is
mainly used in Matita to explore the dependencies between concepts, but other
kind of graphs (e.g. the DAG formed by the declared coercions) are also shown.

The library browser is a GTK+ window that mimics a web browser, provid-
ing a centralized interface for all the searching and rendering functionalities of
Matita. It is used to hierarchically browse the library, to render proofs and defini-
tions in natural language, to query the search engine, and to inspect dependency
graphs embedding the graph browser.

The GUI is the graphical user interface of Matita, inspired by the pioneering
work on CtCoq [4] and by Proof General [2]. It differs from Proof General because
the sequents are rendered in high quality MathML notation, and because it
allows to open multiple library browser windows to interact with the library
during proof development.

The hypertextual browsing of the library and proof-by-pointing [5] are both
supported by semantic selection. Semantic selection is a technique that consists
in enriching the presentation level terms with pointers to the content level terms
and to the partially specified terms they correspond to. Highlight of formulae in
the widget is constrained to selection of meaningful expressions, i.e. expressions
that correspond to a lower level term, that is a content term or a partially or
fully specified term. Once the rendering of an upper level term is selected it is
possible for the application to retrieve the pointer to the lower level term. An
example of applications of semantic selection is semantic copy & paste: the user
can select an expression and paste it elsewhere preserving its semantics (i.e. the
partially specified term), possibly performing some semantic transformation over
it (e.g. renaming variables that would be captured or λ-lifting free variables).

Commands to the system can be given either visually (by means of buttons
and menus) or textually (the preferred way to input tactics since formulae occurs
as tactic arguments). The textual parser for the commands is implemented in the
vernacular component, that is obviously system (and partially logic) dependent.



8 A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli

To conclude the description of the components of Matita, the driver compo-
nent, which does not act directly on terms, is responsible for pulling together
the other components, for instance to parse a command (using the vernacular
component) and then triggering its execution (for instance calling the tactics
component if the command is a tactic).

2.1 Relationship with Other Architectures

An interesting question is which components of Matita have counterparts in
systems based on different architectural choices. As an example we consider how
we would implement a system based on the following commitments: (1) The
architecture is LCF-like. Proof objects are not recorded. (2) The system library
is made of scripts. Proof concepts are indexed only after evaluation. (3) The
proof language is declarative. Ambiguities in formulae are handled by the type
system (e.g. type classes accounts for operator overloading).

Formulae are still represented as presentation, content, partially specified
and completely specified terms. Proofs, that are distinct from formulae, exists
at the presentation and content level, but do not have a counterpart as partially
or completely specified terms. Since only concepts in memory can be queried,
metadata are not required: formulae can be indexed using context trees or similar
efficient data structures that acts on completely specified formulae.

The following components in Figure 1 have similar counterparts. The file
manager to store environments obtained processing scripts to avoid re-execution.
The kernel, that checks definition and theorems, is still present but now it imple-
ments the basic tactics, i.e. the tactics that implement reduction and conversion
or that correspond to the introduction and elimination rules of the logics. The
indexing component is not required since in charge of extracting metadata that
are neglected. However, the metadata manager that used to index metadata is
now provided by the context tree manager that indexes the formulae. Logic in-
dependence is lost unless the formulae are represented as sort of S-expressions,
reintroducing the equivalent of the metadata data type. The search engine and
the library manager are present since the corresponding functionalities (search-
ing and management of derived notions) are still required. All the components
that act on partially specified terms are present, even if basic tactics have been
moved to the kernel. The content component is simplified since the translation
(pretty printing) from completely specified terms to content level terms is point-
less due to the lack of proof objects. The ambiguity manager that acts on content
level formulae is removed or it is greatly simplified since type classes take care
of overloading. Finally, all the components that act on presentation level terms
are present and are likely to be reusable without major changes.

Of course the fact that many components have counterparts among the two
set of architectural choices is due to the coarseness of both the description and
the provided functionalities. This is wanted. In our opinion the issue of choosing
the granularity level of architectures so that smaller components of different
systems can be independently compared is non trivial, and was an issue we
wanted to address.



Crafting a Proof Assistant 9

3 Functional Architectural Analysis and Reusability

A different classification—other than the data-driven one given in the previous
section—of the components shown in Figure 1 is along the lines of the offered
functionalities. We grouped the components according to five (macro) function-
alities, which are depicted in the vertical partition of Figures 2 and 3: visual in-
teraction and browsing of a mathematical library (GUI column), input/output
(i.e. parsing and pretty-printing) of formulae and proofs (I/O column), indexing
and searching of concepts in a library (search column), management of a library
of certified concepts (library column), and interactive development of proofs by
means of tactics and decision procedures (proof authoring column).

Fig. 2. Logic independent components by functionalities.

In the development history of Matita this classification has been useful for the
assignment of development tasks, since the knowledge required for implementing
different functionalities varies substantially.

For each functionality it is interesting to assess the degree of coupling of each
component with the logical framework. Having a clear separation between the
logic dependent components and the logic independent ones should be one of
the main guidelines for the development of interactive theorem provers, since it
helps to clarify the interface of each component. Moreover, the logic independent
functionalities are probably of interest to a broader community.



10 A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli

In Figure 2 we have isolated the logic independent components of Matita
(lower part), showing the dependencies among them (solid lines). Some of them
depend on “stubs” for logic dependent components, depicted in the upper part
of the figure.

The effort for re-targeting Matita to a different logic amounts to provide a
new implementation for the stubs. Figure 3 shows the current Matita imple-
mentation of CIC. In our case, the logic-dependent components are about 2/3
of the whole code (also due to the peculiar complexity of CIC). However, the
real point is that the skills required for implementing the logic-dependent stubs
are different from those needed for implementing the logic-independent compo-
nents, hence potentially permitting to obtain in a reasonable time and with a
limited man-power effort a first prototype for early testing. In the next section
we investigate this point presenting a detailed timeline for the development of
the system.

Fig. 3. Stubs implementation for CIC.

A different problem is to understand if there are components that can be
reused in systems based on different architectural commitments. A well known
example of such a tool is the Proof General generic user interface. Having a
reusable user interface is a relatively simple task since not only the user interface
is logic independent, but it is also the most external component of a system.
We believe that some other logic independent components of Figure 1 could be



Crafting a Proof Assistant 11

adapted to other architectures; for instance, components that deal with indexing
and searching are likely to be embeddable in any system with minor efforts. This
issue of reusability is one of the subject of our current research.

4 System Development

Figure 4 is an hypothetical Gantt-like diagram for the development of an inter-
active theorem prover with the same architectural commitments of Matita and
a logic with comparable complexity. The order in which to develop the compo-
nents in the figure does not reflect the development history of Matita, where we
delayed a few activities, with major negative impacts on the whole schedule.

Fig. 4. Gantt-like development schedule of an interactive theorem prover.



12 A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli

The duration of the activities in the diagram is an estimation of the time
that would be required now by an independent team to re-implement Matita
assuming only the knowledge derivable from the literature.

In any case, in the estimated duration of the activities we are considering the
time wasted for rapid prototyping: it is not reasonable in a research community
to expect the product to be developed for years without any intermediate pro-
totype to play with. For example, we suggest to implement first reduction and
typing in the kernel on completely specified terms before extending it to accom-
modate metavariables (later on required for partially specified terms). This way
the kernel of the type-checker can immediately be tested on a library of con-
cepts exported from another system, and different reduction and type-checking
algorithms can be compared leading to possibly interesting research results.

Activities related to logic independent components are marked as dashed in
the Gantt-like diagram. If those components are reused in the implementation
of the system, most functionalities but interactive proof authoring are made
available very early in the development. The bad news are that the overall time
required to develop the system will not change, being determined by the com-
plexity of the logic dependent components and their dependencies that limit
parallelism. Switching to a simpler logic can probably reduce in a significant
way the time required to implement the kernel and the refinement component;
however, it is likely to have a minor impact on the time required for tactics and
decision procedures. Instead changing the initial architectural commitments (e.g.
dropping proof objects and adopting an LCF-like kernel) is likely to change the
Gantt in a sensible way. The overall conclusion is that the development of an in-
teractive theorem prover is still a complex job that is unlikely to be substantially
simplified in the near future.

The activities of Figure 4 refine the components already presented to improve
parallel development and allow rapid prototyping. We describe now the main
refinements following the timeline when possible.

We suggest to start developing the kernel omitting support for terms con-
taining metavariables and to add it after the reduction and typing rules for
completely specified terms have been debugged. The support for metavariables
in the kernel should be kept minimal, only implementing typing rules and unfold-
ing of instantiated metavariables. The core functionalities on partially specified
terms, unification and refinement, are implemented in the refiner component
outside the kernel. Completely omitting support for metavariables from the ker-
nel is more compliant to the De Bruijn criterion. However, the kernel code for
minimal metavariable support is really simple and small, and its omission forces
an almost complete re-implementation of the kernel functionalities in the refiner
that is better avoided.

Context dependent terms are a necessity for passing to tactics arguments that
need to be interpreted (and disambiguated) in a context that is still unknown.
In Matita context dependent terms are defined as functions from contexts to
terms, but other systems adopt different representations.



Crafting a Proof Assistant 13

Patterns are data structures to represent sequents with selected subterms.
They are used as tactic arguments to localize the effect of tactics. Patterns pose
a major problem to the design of textual user interfaces, that usually avoid them,
but are extremely natural in graphical user interface where they correspond to
visual selection (using the mouse) of subterms of the sequent.

A fixed built-in notation should be implemented immediately for debugging,
followed by the content component to map completely (or even partially) spec-
ified terms to content and the other way around. Partially specified terms gen-
erated by the reverse mapping cannot be processed any further until the refiner
component is implemented. Similarly, the reverse mapping of ambiguous terms
is delayed until the ambiguity manager is available.

The rendering and extensible notation activities implement the notation
manager component. Initially the machinery to apply extensible notation during
rendering is implemented in the rendering activity. A user-friendly language to
extend at run time the notation is the subject of the second activity that is
better delayed until the interaction mode with the system become clear.

Handling of implicit coercions and localized terms in the refiner component
can be delayed until unification and a light version of refinement are imple-
mented. This way the implementation of tactics can start in advance. Localized
terms are data structures to represent partially specified terms obtained by for-
mulae given in input by the user. A refinement error on a localized term should
be reported to the user by highlighting (possibly visually) the ill-typed sub-
formula. Localized terms pose a serious problem since several operations such
as reduction or insertion of an implicit coercion change or loose the localization
information. Thus the refiner must be changed carefully to cope with the two
different representations of terms.

The basic user interface is an interface to the library that offers browsing,
searching and proof-checking, but no tactic based proof authoring. It can, how-
ever, already implement proof authoring by direct term manipulation that, once
refinement is implemented, can become as advanced as Alf is [11]. The advanced
user interface offers all the final features of the system, it can be script based
and it can present the desired interaction style (procedural versus declarative).

Finally, primitive tactics, that implement the inference rules of the logic,
and tacticals are requirements for the development of more advanced interactive
tactics and automation tactics, that can proceed in parallel.

5 Conclusions and Future Work

We feel the need for more direct comparisons between different interactive theo-
rem provers to highlight the common functionalities, not only in view of reusabil-
ity but also to encourage a more systematic comparison of different softwares
and architectural solutions. In this paper we have contributed by showing how
the architecture of a system (in our case Matita) can be analyzed by classifying
its software components along different axes: the representation of formulae and
proofs they act on and the macro functionalities they contribute to.



14 A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli

Moreover, we believe that an effort should be made to clearly split the logic
dependent components from those that are or can be made logic independent.
In addition to be able to clarify the interfaces of the components and their
dependencies, this division has immediate applications: having done this for
Matita we are now able to clearly estimate the efforts, both in time and in
lines of code, required to re-target the system to a different logic. This answers a
frequent question posed to us by members of the Types community, since Matita
presents technological innovations which are interesting for developers of systems
based on logical frameworks other than CIC.

In particular, we have estimated that only one third of the code of Matita
(that is still more than 22,000 lines of code) is logic independent, which can
be explained by the complexity of the logical system. We have also estimated
that re-targeting Matita to a logic with the same complexity as the current one
would not require significantly less time than the first implementation (assuming
to have enough man power to develop concurrently all parallel tasks). However,
working prototypes including even advanced functionalities would be obtained
quite early in the development stage, with a positive impact at least on debug-
ging, dissemination, and system evaluation. To our knowledge, similar figures
have never been presented for other systems.

A more complex issue is the independence of software components from the
main architectural commitments, and consequently their degree of cross-system
reusability. We believe that several of the components of Matita have counter-
parts in systems based on different architectures, and that at least some of them
could be embedded in other systems after some modifications. This has already
been proven true by Proof General for the graphical user interface. However,
that is the easiest case, the graphical user interface being the most external
component with no dependencies on it.

Better understanding this issue is one of our current research guidelines, but
it requires an initial effort by the whole community to analyze the architec-
tures of several systems according to common criteria in order to identify the
corresponding components and to understand how they differ in the various ar-
chitectures. Our next contribution will consist in a description of the API of the
components presented here.

References

1. Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Ste-
fano Zacchiroli. A content based mathematical search engine: Whelp. In Post-
proceedings of the Types 2004 International Conference, volume 3839 of Lecture
Notes in Computer Science, pages 17–32. Springer-Verlag, 2004.

2. David Aspinall. Proof General: A generic tool for proof development. In Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2000, volume
1785 of Lecture Notes in Computer Science. Springer-Verlag, January 2000.

3. Gilles Barthe. Implicit coercions in type systems. In Types for Proofs and Programs:
International Workshop, TYPES 1995, pages 1–15, 1995.



Crafting a Proof Assistant 15

4. Yves Bertot. The CtCoq system: Design and architecture. Formal Aspects of
Computing, 11:225–243, 1999.

5. Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In Symposium
on Theoretical Aspects Computer Software (STACS), volume 789 of Lecture Notes
in Computer Science, 1994.

6. Yann Coscoy. Explication textuelle de preuves pour le Calcul des Constructions
Inductives. PhD thesis, Université de Nice-Sophia Antipolis, 2000.

7. Yann Coscoy, Gilles Kahn, and Laurent Thery. Extracting Text from Proofs.
Technical Report RR-2459, Inria (Institut National de Recherche en Informatique
et en Automatique), France, 1995.

8. Herman Geuvers and Gueorgui I. Jojgov. Open proofs and open terms: A basis
for interactive logic. In J. Bradfield, editor, Computer Science Logic: 16th Interna-
tional Workshop, CLS 2002, volume 2471 of Lecture Notes in Computer Science,
pages 537–552. Springer-Verlag, January 2002.

9. John Harrison. A Mizar Mode for HOL. In Joakim von Wright, Jim Grundy, and
John Harrison, editors, Theorem Proving in Higher Order Logics: 9th International
Conference, TPHOLs’96, volume 1125 of Lecture Notes in Computer Science, pages
203–220, Turku, Finland, 1996. Springer-Verlag.

10. Zhaohui Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–
130, 1999.

11. Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof engine.
In Types for Proofs and Programs, volume 806 of LNCS, pages 213–237, Nijmegen,
1994. Springer-Verlag.

12. Mathematical Markup Language (MathML) Version 2.0. W3C Recommendation
21 February 2001, http://www.w3.org/TR/MathML2, 2003.

13. César Muñoz. A Calculus of Substitutions for Incomplete-Proof Representation in
Type Theory. PhD thesis, INRIA, November 1997.

14. OMDoc: An open markup format for mathematical documents (draft, version 1.2).
http://www.mathweb.org/omdoc/pubs/omdoc1.2.pdf, 2005.

15. Luca Padovani and Stefano Zacchiroli. From notation to semantics: There and
back again. In Proceedings of Mathematical Knowledge Management 2006, volume
3119 of Lectures Notes in Artificial Intelligence, pages 194–207. Springer-Verlag,
2006.

16. Alexandre Riazanov. Implementing an Efficient Theorem Prover. PhD thesis, The
University of Manchester, 2003.

17. Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. Tinycals: step by
step tacticals. In Proceedings of User Interface for Theorem Provers 2006, Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science, 2006. To appear.

18. Claudio Sacerdoti Coen and Stefano Zacchiroli. Efficient ambiguous parsing of
mathematical formulae. In Andrzej Trybulec Andrea Asperti, Grzegorz Bancerek,
editor, Proceedings of Mathematical Knowledge Management 2004, volume 3119 of
Lecture Notes in Computer Science, pages 347–362. Springer-Verlag, 2004.

19. Martin Strecker. Construction and Deduction in Type Theories. PhD thesis, Uni-
versität Ulm, 1998.

20. Freek Wiedijk. Mmode, a mizar mode for the proof assistant coq. Technical Report
NIII-R0333, University of Nijmegen, 2003.

http://www.w3.org/TR/MathML2
http://www.mathweb.org/omdoc/pubs/omdoc1.2.pdf

	Crafting a Proof Assistant

